Введение в данные от Coursera

От: Coursera

Практический курс по введению в данные от НГУ. Возможность бесплатного участия. Длится 1,5 месяца. 3–5 часов занятий в неделю. Полезен начинающим специалистам Data Science, которые имеют небольшой опыт работы. Преподаватели разберут теорию вероятностей, статистический анализ выборочных данных, графический анализ, формирование выборок. В конце курса проверка знаний с помощью итогового теста. После защиты проекта выдаётся сертификат.

Сводка

Цена
0₽
Рассрочка
от 200₽
Статус
Идет набор
Длительность
35 дней
Язык
ru

Описание курса

Использовать в работе инструменты теории вероятностей, математической статистики и типов данных

- Владеть основами теории вероятностей
- Разбираться в описательных статистиках и типа характеристик распределений: мерах центральной тенденции
- Применять основные виды графиков и учитывать основные ограничения для каждого графического инструмента
- Строить выборки
- Работать с пропущенными и неопределенными данными

О школе

Coursera
Отзывы 0
Информация
Компания основана в 2012 году. Официальный сайт https://ru.coursera.org. Мы собрали и проверили более 17 отзывов об онлайн курсах Coursera.

Программа курса

ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
В первом модуле курса мы вспомним основы теории вероятностей. Мы поговорим о вероятности и её свойствах, о случайных величинах и их характеристиках, а также об основных распределениях случайных величин и их ключевых свойствах. Этот модуль формирует основы для понимания принципов, на которых строится статистический анализ данных.
ОСНОВЫ СТАТИСТИЧЕСКОГО АНАЛИЗА ВЫБОРОЧНЫХ ДАННЫХ
В этом модуле мы поговорим об описательных статистиках и о двух типа характеристик распределений: меры центральной тенденции (или просто меры центра: что типично для исследуемого распределения) и меры вариативности (или меры разброса: насколько разнообразны значения признака, распределение которого исследуется). Для начала мы разберемся с типами данных, немного поговорим о выборках, и затем рассмотрим основные меры центра и разброса, применимые для данных разных типов. В завершении модуля мы посмотрим, как рассчитываются описательные статистики в SPSS и в R.
ГРАФИЧЕСКИЙ АНАЛИЗ ДАННЫХ
В этом модуле мы займемся графическим анализом данных. Сначала мы увидим, как по-разному могут выглядеть распределения, обладающие похожими характеристиками. Затем рассмотрим основные виды графиков, поймём области их применения и основные ограничения для каждого графического инструмента. В практической части курса мы научимся строить графики в SPSS и в R.
ФОРМИРОВАНИЕ ВЫБОРОК И ПОДГОТОВКА ДАННЫХ
В этом модуле мы поговорим о том, как строить выборки, а также научимся работать с пропущенными и неопределенными данными. Мы рассмотрим основные виды выборок, научимся рассчитывать необходимый объем выборки и ошибку выборки, а также разберём, как кодировать пропущенные и неопределённые данные и что делать с ними дальше. В практической части модуля мы научимся формировать массив данных в SPSS так, чтобы сэкономить время на этапе обработки и анализа данных.
Практические задания
В этом модуле вам предстоит применить полученные в курсе знания на практике. Сначала пройдите итоговый тест, чтобы проверить полученные в курсе знания и навыки. Также вам предлагается выполнить небольшой самостоятельный проект на реальных данных, предоставленных компанией 2GIS: проанализировать данные самостоятельно, а также оценить сокурсников.
Инструменты
SPSS
R

Отзывы

Еще не добавили ни одного отзыва