Введение в машинное обучение

От: Coursera

Вводный курс по освоению инструментов машинного обучения от Высшей школы экономики. Можно обучиться бесплатно. Длится 2 месяца по 3–5 часов занятий в неделю. Подойдёт специалистам Data Science. В программе: обзор основных типов задач, решаемых с помощью машинного обучения, методов машинного обучения и их особенностей. Для работы студенты будут использовать данные из реальных задач. Фидбэк от преподавателя по заданиям и сертификат в конце курса.

Сводка

Цена
0₽
Рассрочка
от 200₽
Статус
Идет набор
Начнется
12.10.2020
Длительность
4 недели
Язык
ru

Описание курса

Решать основные задачи с помощью машинного обучения

- Владеть навыками классификации, регрессии и кластеризации
- Понимать основные методы машинного обучения и их особенности
- Оценивать качество моделей и решать, подходит ли модель для решения конкретной задачи
- Работать с современными библиотеками и оценивать их качества

О школе

Coursera
Отзывы 0
Информация
Компания основана в 2012 году. Официальный сайт https://ru.coursera.org. Мы собрали и проверили более 17 отзывов об онлайн курсах Coursera.

Программа курса

Знакомство с анализом данных и машинным обучением
Добро пожаловать! В первом модуле курса мы расскажем о задачах, которые решает машинное обучение, определим базовый набор понятий и введем необходимые обозначения. Также мы расскажем про основные библиотеки языка Python для работы с данными (NumPy, Pandas, Scikit-Learn), которые понадобятся для выполнения практических заданий на протяжении всего курса.
Логические методы классификации
Логические методы делают классификацию объектов на основе простых правил, благодаря чему являются интерпретируемыми и легкими в реализации. При объединении в композицию логические модели позволяют решать многие задачи с высоким качеством. В этом модуле мы изучим основной класс логических алгоритмов — решающие деревья. Также мы поговорим про объединение деревьев в композицию, называемую случайным лесом.
Метрические методы классификации
Метрические методы проводят классификацию на основе сходства, благодаря чему могут работать на данных со сложной структурой — главное, чтобы между объектами можно было измерить расстояние. Мы изучим метод k ближайших соседей, а также способ его обобщения на задачи регрессии с помощью ядерного сглаживания.
Линейные методы классификации
Линейные модели — один из наиболее изученных классов алгоритмов в машинном обучении. Они легко масштабируются и широко применяются для работы с большими данными. В этом модуле мы изучим метод стохастического градиента для настойки линейных классификаторов, познакомимся с регуляризацией и обсудим некоторые тонкости работы с линейными методами.
Метод опорных векторов и логистическая регрессия
Линейные методы имеют несколько очень важных подвидов, о которых пойдет речь в этом модуле. Метод опорных векторов максимизирует отступы объектов, что тесно связано с минимизацией вероятности переобучения. При этом он позволяет очень легко перейти к построению нелинейной разделяющей поверхности благодаря ядровому переходу. Логистическая регрессия позволяет оценивать вероятности принадлежености классам, что оказывается полезным во многих прикладных задачах.
Метрики качества классификации
В машинном обучении существует большое количество метрик качества, каждая из которых имеет свою прикладную интерпретацию и направлена на измерение конкретного свойства решения. В этом модуле мы обсудим, какие бывают метрики качества бинарной и многоклассовой классификации, а также рассмотрим способы сведения многоклассовых задач к двухклассовым.
Линейная регрессия
В этом модуле мы изучим линейные модели для регрессии и обсудим их связь с сингулярным разложением матрицы "объекты-признаки".
Понижение размерности и метод главных компонент
В прикладных задачах часто возникает потребность в уменьшении количества признаков — например, для ускорения работы моделей. В этом модуле мы обсудим подходы к отбору признаков, а также изучим метод главных компонент, один из самых популярных методов понижения размерности.Композиции алгоритмов
Объединение большого числа моделей в композицию может значительно улучшить итоговое качество за счет того, что отдельные модели будут исправлять ошибки друг друга. В этом модуле мы обсудим основные понятия и постановки задач, связанные с композициями, и обсудим один из наиболее распространенных способов их построения — градиентный бустинг.
Нейронные сети
Нейронные сети позволяют находить сложные нелинейные разделяющие поверхности, благодаря чему широко используются в таких трудных задачах, как распознавание изображений и речи. В этом модуле мы изучим многослойные нейронные сети и их настройку с помощью метода обратного распространения ошибки. Также мы поговорим о глубоких нейросетях, их архитектурах и особенностях.
Кластеризация и визуализация
Этот модуль посвящен новому классу задач в машинном обучении — обучению без учителя. Под этим понимаются ситуации, в которых нужно найти структуру в данных или произвести их "разведку". В этом модуле мы обсудим две таких задачи: кластеризацию (поиск групп схожих объектов) и визуализацию (отображение объектов в двух- или трехмерное пространство).
Частичное обучение
Под частичным обучение понимается задача, находящаяся между обучением с учителем и кластеризацией: дана выборка, в которой значение целевой переменной известно лишь для части объектов. Такие ситуации встречаются, когда разметка объектов является дорогой операцией, но при этом достаточно дешево можно подсчитать признаки для объектов. В этом модуле мы обсудим отличия частичного обучения от рассмотренных ранее постановок, и разберем несколько подходов к решению.
Машинное обучение в прикладных задачах
В этом модуле мы подведем итоги курса, вспомним основные этапы решения задачи анализа данных. Также мы разберем несколько задач из прикладных областей, чтобы подготовиться к выполнению финального проекта.
Инструменты
Python
NumPy
Pandas
Scikit-learn

Отзывы

Еще не добавили ни одного отзыва