Модели с дискретными и непрерывными предикторами
Дискретные предикторы кодируют принадлежность объекта к каким-то дискретным группам. В этом модуле вы узнаете, что эти неведомые предикторы не так уж чужды обычным линейным моделям и регрессионные методы вполне можно применять для их анализа. Для начала мы поговорим о том, как можно их закодировать. Вы начнете знакомство со взаимодействием дискретных и непрерывных предикторов, и оно продолжится в следующем модуле. А в этом мы разберем поведение дискретных предикторов в моделях без взаимодействия.
Модели с разными значениями угла наклона для групп
В случае, когда зависимость количественных величин выглядит по-разному для разных групп дискретного фактора, мы говорим, что между непрерывным и дискретным предиктором есть взаимодействие. В этом модуле вы научитесь строить и описывать линейные модели для анализа такого рода данных. Мы будем использовать технику сравнения вложенных моделей при помощи частного F-критерия для того, чтобы из сложной модели со множеством взаимодействий получить более простую. Наконец, вы увидите, что интерпретация моделей, в которых есть значимое взаимодействие, значительно упрощается, если можно построить график их предсказаний.
Однофакторный дисперсионный анализ
В одном из предыдущих курсов специализации мы с вами научились решать задачу сравнения значений в дискретных группах при помощи t-критерия. На самом деле, эту же задачу можно эффективно решить, оставаясь в рамках линейных моделей - при помощи дисперсионного анализа. Этот метод позволяет одновременно искать различия между множеством групп, заданных множеством дискретных факторов. В этом модуле вы познакомитесь с устройством однофакторного дисперсионного анализа и научитесь не только тестировать с его помощью значимость влияния дискретных факторов, но и выяснять при помощи пост хок тестов, с различиями каких именно групп связано это влияние.
Многофакторный дисперсионный анализ
Многофакторный дисперсионный анализ - это мощный метод, который позволяет выявлять влияние нескольких дискретных предикторов на непрерывную зависимую переменную. В этом модуле мы подробно обсудим проблему взаимодействия дискретных факторов, возникающую в такого рода анализах. Далее мы обсудим анализ данных с разным числом наблюдений в группах. Вы узнаете, что результаты дисперсионного анализа таких несбалансированных данных зависят от порядка тестирования гипотез, и в определенных случаях важно выбрать правильный способ параметризации линейной модели. Наконец, мы расскажем вам о трюке, который можно использовать для проведения пост хок теста для взаимодействия факторов в R. Закрепить свои знания об анализе линейных моделей, включающих дискретные предикторы, вы сможете, выполнив проект по анализу данных. Результаты этого анализа нужно будет представить в виде отчета в формате html, написанного при помощи rmarkdown/knitr